Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Environ Toxicol Pharmacol ; 104: 104316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37981204

RESUMO

This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Camundongos , Animais , Feminino , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Transcriptoma , Camundongos Endogâmicos C57BL , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Tamanho da Partícula
2.
J Comp Neurol ; 530(12): 2154-2175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35397118

RESUMO

Olfactory epithelium (OE) is capable of lifelong regeneration due to presence of basal progenitor cells that respond to injury or neuronal loss with increased activity. However, this capability diminishes with advancing age and a decrease in odor perception in older individuals is well established. To characterize changes associated with age in the peripheral olfactory system, an in-depth analysis of the OE and its neuronal projections onto the olfactory bulb (OB) as a function of age was performed. Human olfactory tissue autopsy samples from 36 subjects with an average age of 74.1 years were analyzed. Established cell type-specific antibodies were used to identify OE component cells in whole mucosal sheets and epithelial sections as well as glomeruli and periglomerular structures in OB sections. With age, a reduction in OE area occurs across the mucosa progressing in a posterior-dorsal direction. Deterioration of the olfactory system is accompanied with diminution of neuron-containing OE, mature olfactory sensory neurons (OSNs) and OB innervation. On an individual level, the neuronal density within the epithelium appears to predict synapse density within the OB. The innervation of the OB is uneven with higher density at the ventral half that decreases with age as opposed to stable innervation at the dorsal half. Respiratory metaplasia, submucosal cysts, and neuromata, were commonly identified in aged OE. The finding of respiratory metaplasia and aneuronal epithelium with reduction in global basal cells suggests a progression of stem cell quiescence as an underlying pathophysiology of age-related smell loss in humans. KEY POINTS: A gradual loss of olfactory sensory neurons with age in human olfactory epithelium is also reflected in a reduction in glomeruli within the olfactory bulb. This gradual loss of neurons and synaptic connections with age occurs in a specific, spatially inhomogeneous manner. Decreasing mitotically active olfactory epithelium basal cells may contribute to age-related neuronal decline and smell loss in humans.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Idoso , Anosmia , Humanos , Metaplasia , Bulbo Olfatório/química , Mucosa Olfatória/lesões , Neurônios Receptores Olfatórios/fisiologia
3.
Commun Biol ; 5(1): 88, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075270

RESUMO

Traditional neuroanatomy immunohistology studies involve low-content analyses of a few antibodies of interest, typically applied and compared across sequential tissue sections. The efficiency, consistency, and ultimate insights of these studies can be substantially improved using high-plex immunofluorescence labelling on a single tissue section to allow direct comparison of many markers. Here we present an expanded and efficient multiplexed fluorescence-based immunohistochemistry (MP-IHC) approach that improves throughput with sequential labelling of up to 10 antibodies per cycle, with no limitation on the number of cycles, and maintains versatility and accessibility by using readily available commercial reagents and standard epifluorescence microscopy imaging. We demonstrate this approach by cumulatively screening up to 100 markers on formalin-fixed paraffin-embedded sections of human olfactory bulb sourced from neurologically normal (no significant pathology), Alzheimer's (AD), and Parkinson's disease (PD) patients. This brain region is involved early in the symptomology and pathophysiology of AD and PD. We also developed a spatial pixel bin analysis approach for unsupervised analysis of the high-content anatomical information from large tissue sections. Here, we present a comprehensive immunohistological characterisation of human olfactory bulb anatomy and a summary of differentially expressed biomarkers in AD and PD using the MP-IHC labelling and spatial protein analysis pipeline.


Assuntos
Doença de Alzheimer/metabolismo , Imuno-Histoquímica/métodos , Bulbo Olfatório/química , Doença de Parkinson/metabolismo , Estudos de Casos e Controles , Humanos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Inclusão em Parafina
4.
J Comp Neurol ; 529(9): 2189-2208, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33616936

RESUMO

Olfactory input is processed in the glomerulus of the main olfactory bulb (OB) and relayed to higher centers in the brain by projection neurons. Conversely, centrifugal inputs from other brain regions project to the OB. We have previously analyzed centrifugal inputs into the OB from several brain regions using single-neuron labeling. In this study, we analyzed the centrifugal noradrenergic (NA) fibers derived from the locus coeruleus (LC), because their projection pathways and synaptic connections in the OB have not been clarified in detail. We analyzed the NA centrifugal projections by single-neuron labeling and immunoelectron microscopy. Individual NA neurons labeled by viral infection were three-dimensionally traced using Neurolucida software to visualize the projection pathway from the LC to the OB. Also, centrifugal NA fibers were visualized using an antibody for noradrenaline transporter (NET). NET immunoreactive (-ir) fibers contained many varicosities and synaptic vesicles. Furthermore, electron tomography demonstrated that NET-ir fibers formed asymmetrical synapses of varied morphology. Although these synapses were present at varicosities, the density of synapses was relatively low throughout the OB. The maximal density of synapses was found in the external plexiform layer; about 17% of all observed varicosities contained synapses. These results strongly suggest that NA-containing fibers in the OB release NA from both varicosities and synapses to influence the activities of OB neurons. The present study provides a morphological basis for olfactory modulation by centrifugal NA fibers derived from the LC.


Assuntos
Neurônios Adrenérgicos/ultraestrutura , Rede Nervosa/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/ultraestrutura , Bulbo Olfatório/ultraestrutura , Condutos Olfatórios/ultraestrutura , Neurônios Adrenérgicos/química , Neurônios Adrenérgicos/metabolismo , Animais , Locus Cerúleo/química , Locus Cerúleo/metabolismo , Locus Cerúleo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/metabolismo , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/análise , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Condutos Olfatórios/química , Condutos Olfatórios/metabolismo
5.
J Neurosci ; 41(6): 1218-1241, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33402421

RESUMO

Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable Drosophila brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global dfmr1 null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABAA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped Drosophila olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.


Assuntos
Período Crítico Psicológico , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Olfatório/crescimento & desenvolvimento , Córtex Olfatório/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Feminino , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/química , Neurônios/efeitos dos fármacos , Odorantes , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Córtex Olfatório/química , Neurônios Receptores Olfatórios/química , Neurônios Receptores Olfatórios/metabolismo , Optogenética/métodos
6.
J Neurochem ; 157(6): 1876-1896, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32978815

RESUMO

The olfactory system is a driver of feeding behavior, whereby olfactory acuity is modulated by the metabolic state of the individual. The excitability of the major output neurons of the olfactory bulb (OB) can be modulated through targeting a voltage-dependent potassium channel, Kv1.3, which responds to changes in metabolic factors such as insulin, glucose, and glucagon-like peptide-1. Because gene-targeted deletion or inhibition of Kv1.3 in the periphery has been found to increase energy metabolism and decrease body weight, we hypothesized that inhibition of Kv1.3 selectively in the OB could enhance excitability of the output neurons to evoke changes in energy homeostasis. We thereby employed metal-histidine coordination to self-assemble the Kv1.3 inhibitor margatoxin (MgTx) to fluorescent quantum dots (QDMgTx) as a means to label cells in vivo and test changes in neuronal excitability and metabolism when delivered to the OB. Using patch-clamp electrophysiology to measure Kv1.3 properties in heterologously expressed cells and native mitral cells in OB slices, we found that QDMgTx had a fast rate of inhibition, but with a reduced IC50, and increased action potential firing frequency. QDMgTx was capable of labeling cloned Kv1.3 channels but was not visible when delivered to native Kv1.3 in the OB. Diet-induced obese mice were observed to reduce body weight and clear glucose more quickly following osmotic mini-pump delivery of QDMgTx/MgTx to the OB, and following MgTx delivery, they increased the use of fats as fuels (reduced respiratory exchange ratio). These results suggest that enhanced excitability of bulbar output neurons can drive metabolic responses.


Assuntos
Metabolismo Energético/fisiologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Obesidade/metabolismo , Bulbo Olfatório/metabolismo , Pontos Quânticos/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Feminino , Canal de Potássio Kv1.3/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Bulbo Olfatório/química , Bulbo Olfatório/efeitos dos fármacos , Pontos Quânticos/análise , Venenos de Escorpião/farmacologia , Venenos de Escorpião/uso terapêutico
7.
Front Neural Circuits ; 14: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390805

RESUMO

A unique feature of the olfactory system is the continuous generation and integration of new neurons throughout adulthood. Adult-born neuron survival and integration is dependent on activity and sensory experience, which is largely mediated by early synaptic inputs that adult-born neurons receive upon entering the olfactory bulb (OB). As in early postnatal development, the first synaptic inputs onto adult-born neurons are GABAergic. However, the specific sources of early synaptic GABA and the influence of specific inputs on adult-born neuron development are poorly understood. Here, we use retrograde and anterograde viral tracing to reveal robust GABAergic projections from the basal forebrain horizontal limb of the diagonal band of Broca (HDB) to the granule cell layer (GCL) and glomerular layer (GL) of the mouse OB. Whole-cell electrophysiological recordings indicate that these projections target interneurons in the GCL and GL, including adult-born granule cells (abGCs). Recordings from birth-dated abGCs reveal a developmental time course in which HDB GABAergic input onto abGCs emerges as the neurons first enter the OB, and strengthens throughout the critical period of abGC development. Finally, we show that removing GABAergic signaling from HDB neurons results in decreased abGC survival. Together these data show that GABAergic projections from the HDB synapse onto immature abGCs in the OB to promote their survival through the critical period, thus representing a source of long-range input modulating plasticity in the adult OB.


Assuntos
Prosencéfalo Basal/fisiologia , Neurônios GABAérgicos/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Fatores Etários , Animais , Prosencéfalo Basal/química , Sobrevivência Celular/fisiologia , Feminino , Neurônios GABAérgicos/química , Masculino , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/química , Condutos Olfatórios/química , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia
8.
Nat Commun ; 11(1): 648, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005822

RESUMO

Current non-invasive neuroimaging methods can assess neural activity in all areas of the human brain but the olfactory bulb (OB). The OB has been suggested to fulfill a role comparable to that of V1 and the thalamus in the visual system and have been closely linked to a wide range of olfactory tasks and neuropathologies. Here we present a method for non-invasive recording of signals from the human OB with millisecond precision. We demonstrate that signals obtained via recordings from EEG electrodes at the nasal bridge represent responses from the human olfactory bulb - recordings we term Electrobulbogram (EBG). The EBG will aid future olfactory-related translational work but can also potentially be implemented as an everyday clinical tool to detect pathology-related changes in human central olfactory processing in neurodegenerative diseases. In conclusion, the EBG is localized to the OB, is reliable, and follows response patterns demonstrated in non-human animal models.


Assuntos
Bulbo Olfatório/química , Bulbo Olfatório/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Comp Neurol ; 528(1): 114-134, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31286519

RESUMO

Detection of chemical cues is important to guide locomotion in association with feeding and sexual behavior. Two neural pathways responsible for odor-evoked locomotion have been characterized in the sea lamprey (Petromyzon marinus L.), a basal vertebrate. There is a medial pathway originating in the medial olfactory bulb (OB) and a lateral pathway originating from the rest of the OB. These olfactomotor pathways are present throughout the life cycle of lampreys, but olfactory-driven behaviors differ according to the developmental stage. Among possible mechanisms, dopaminergic (DA) modulation in the OB might explain the behavioral changes. Here, we examined DA modulation of olfactory transmission in lampreys. Immunofluorescence against DA revealed immunoreactivity in the OB that was denser in the medial part (medOB), where processes were observed close to primary olfactory afferents and projection neurons. Dopaminergic neurons labeled by tracer injections in the medOB were located in the OB, the posterior tuberculum, and the dorsal hypothalamic nucleus, suggesting the presence of both intrinsic and extrinsic DA innervation. Electrical stimulation of the olfactory nerve in an in vitro whole-brain preparation elicited synaptic responses in reticulospinal cells that were modulated by DA. Local injection of DA agonists in the medOB decreased the reticulospinal cell responses whereas the D2 receptor antagonist raclopride increased the response amplitude. These observations suggest that DA in the medOB could modulate odor-evoked locomotion. Altogether, these results show the presence of a DA innervation within the medOB that may play a role in modulating olfactory inputs to the motor command system of lampreys.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Locomoção/fisiologia , Bulbo Olfatório/metabolismo , Petromyzon/metabolismo , Olfato/fisiologia , Animais , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Masculino , Odorantes , Bulbo Olfatório/química , Bulbo Olfatório/efeitos dos fármacos , Nervo Olfatório/química , Nervo Olfatório/efeitos dos fármacos , Nervo Olfatório/metabolismo , Olfato/efeitos dos fármacos
10.
Brain Struct Funct ; 225(1): 321-344, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858237

RESUMO

Extracellular matrix (ECM) became an important player over the last few decades when studying the plasticity and regeneration of the central nervous system. In spite of the established role of ECM in these processes throughout the central nervous system (CNS), only few papers were published on the ECM of the olfactory system, which shows a lifelong plasticity, synaptic remodeling and postnatal neurogenesis. In the present study, we have described the localization and organization of major ECM molecules, the hyaluronan, the lecticans, tenascin-R and HAPLN1 link protein in the olfactory bulb (OB) of the rat. We detected all of these molecules in the OB showing differences in the molecular composition, staining intensity, and organization of ECM between the layers and in some cases within a single layer. One of the striking features of ECM staining pattern in the OB was that the reactions are shown dominantly in the neuropil, the PNNs were found rarely and they exhibited thin or diffuse appearance Similar organization was shown in human and mice samples. As the PNN limits the neural plasticity, its rare appearance may be related to the high degree of plasticity in the OB.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/química , Neurônios/citologia , Bulbo Olfatório/química , Bulbo Olfatório/citologia , Animais , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Wistar
11.
Cell Rep ; 29(13): 4334-4348.e7, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875544

RESUMO

In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting.


Assuntos
Axônios/metabolismo , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Receptores Odorantes/genética , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Misturas Complexas/química , Embrião de Mamíferos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes/análise , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/ultraestrutura , Proteína de Ligação a Fosfatidiletanolamina/deficiência , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Odorantes/metabolismo , Transdução de Sinais , Olfato/fisiologia
12.
Methods Mol Biol ; 2044: 273-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432419

RESUMO

Nowadays, diagnosis of neurodegenerative disorders is mainly based on neuroimaging and clinical symptoms, although postmortem neuropathological confirmation remains the gold standard diagnostic technique. Therefore, cerebrospinal fluid (CSF) proteome is considered a valuable molecular repository for diagnosing and targeting the neurodegenerative process. It is well known that olfactory dysfunction is among the earliest features of synucleinopathies such as Parkinson's disease (PD). Consequently, we consider that the application of tissue proteomics in primary olfactory structures is an ideal approach to explore early pathophysiological changes, detecting olfactory proteins that might be tested in CSF as potential biomarkers. Data mining of mass spectrometry-generated datasets has revealed that 30% of the olfactory bulb (OB) proteome is also localized in CSF. In this chapter, we describe a method that utilizes label-free quantitative proteomics and computational analysis to characterize human OB proteomes and potential cerebrospinal fluid (CSF) biomarkers associated with neurodegenerative syndromes. For that, we applied peptide fractionation methods, followed by tandem mass spectrometry (nanoLC-MS/MS), in silico analysis, and semi-quantitative orthogonal techniques in OB derived from PD subjects. After obtaining the differential OB proteome across Lewy-type alpha-synucleinopathy (LTS) stages and further validating the method, this workflow was applied to probe changes in NEGR1 (neuronal growth regulator 1) and GNPDA2 (glucosamine-6-phosphate deaminase 2) protein levels in CSF derived from parkinsonian subjects with respect to controls, observing an inverse correlation between both proteins and α-synuclein, the principal component analysis of Lewy pathology.


Assuntos
Proteínas do Líquido Cefalorraquidiano/metabolismo , Bulbo Olfatório/metabolismo , Doença de Parkinson/líquido cefalorraquidiano , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores/líquido cefalorraquidiano , Moléculas de Adesão Celular Neuronais/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/química , Fracionamento Químico , Biologia Computacional , Proteínas Ligadas por GPI/líquido cefalorraquidiano , Glucosamina 6-Fosfato N-Acetiltransferase/líquido cefalorraquidiano , Humanos , Bulbo Olfatório/química , Peptídeos/análise , Peptídeos/química , Sinucleinopatias/líquido cefalorraquidiano , Espectrometria de Massas em Tandem , alfa-Sinucleína/metabolismo
13.
BMC Microbiol ; 19(1): 125, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185898

RESUMO

BACKGROUND: Pseudorabies virus (PRV, or suid herpesvirus, SuHV-1), a member of the herpesvirus family, has an extremely broad host range and threatens the pig industry in China. PRV can evade host innate immunity and infect the kidney, lung, brain and other tissues. At the same time, many studies have reported that microRNA (miRNA) can affect the replication of viruses by regulating gene expression levels. RESULTS: Here, to identify changes in miRNA expression and post-transcriptional regulation associated with PRV infection in the lung, spleen, and olfactory bulb, we sequenced small RNAs in tissues of rats infected or uninfected with PRV strain XJ (PRV-XJ). Sixty-one, 199 and 29 differentially-expressed miRNAs were identified in the lung, spleen, and olfactory bulb, respectively, of infected compared with uninfected rats. Among the miRNAs differentially-expressed in PRV-infected rats, 36, 171, and 15 miRNAs showed tissue-selective expression in the olfactory bulb, lung and spleen, respectively. All differentially-expressed miRNAs were analyzed for their GO functional annotations and KEGG pathway associations . CONCLUSIONS: In PRV-XJ-infected rats, miRNAs were differentially expressed in the lung, spleen and olfactory bulb. These miRNAs were involved in regulating various pathways of the nervous, respiratory and immune systems, and may affect the tissue tropism of the virus and play pivotal roles in viral infection and proliferation.


Assuntos
Herpesvirus Suídeo 1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , MicroRNAs/genética , Pseudorraiva/genética , Análise de Sequência de RNA/veterinária , Animais , Estudos de Casos e Controles , China , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Pulmão/química , Pulmão/virologia , Masculino , Bulbo Olfatório/química , Bulbo Olfatório/virologia , Especificidade de Órgãos , Pseudorraiva/virologia , Ratos , Baço/química , Baço/virologia , Tropismo Viral
14.
J Comp Neurol ; 527(18): 2931-2947, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132148

RESUMO

Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle generate new interneurons, which migrate tangentially through the rostral migratory stream (RMS) to the olfactory bulb (OB). The PROK2 (prokineticin 2) and PROKR2 (prokineticin receptor 2) signaling pathway has been identified to cause human Kallmann syndrome, a developmental disease that associates hypogonadism with anosmia (OB developmental defects). However, the identities and properties of PROK2+ and PROKR2+ cells in the SVZ-RMS-OB remain largely unknown. Here we examine the expression patterns of Prok2 and Prokr2 in the SVZ-RMS-OB using Prok2EGFP transgenic and Prokr2LacZ/+ knockin mice. Our results show that Prokr2 is expressed in postmitotic immature interneurons in the SVZ-RMS-OB. Prok2 is not expressed in the SVZ, but a few PROK2+ cells are found in the medial part of the RMS; they are not neural progenitors or migrating neuroblasts. In the OB, Prok2 is expressed in a subset of granule cells and tufted cells, but no coexpression of Prok2 and Prokr2 in the OB cells is observed. In Prok2 and Prokr2 mutant mice, severe tangential and radial migration defects of neuroblasts in the SVZ-RMS-OB result in loss of ~75% of GABAergic interneurons in the OB. These analyses demonstrate that PROK2/PROKR2 signaling is crucial for the tangential and radial migration of OB interneurons.


Assuntos
Movimento Celular/fisiologia , Hormônios Gastrointestinais/biossíntese , Interneurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neuropeptídeos/biossíntese , Bulbo Olfatório/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores de Peptídeos/biossíntese , Animais , Hormônios Gastrointestinais/genética , Interneurônios/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/química , Neuropeptídeos/genética , Bulbo Olfatório/química , Bulbo Olfatório/citologia , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Transdução de Sinais/fisiologia
15.
Chem Senses ; 44(6): 399-408, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31115435

RESUMO

A widely recognized limitation in mammalian olfactory research is the lack of current methods for measuring odor availability (i.e., the quantifiable amount of odor presented and thus available for olfaction) of training or testing materials during behavioral or operational testing. This research utilized an existing technology known as Controlled Odor Mimic Permeation Systems (COMPS) to produce a reproducible, field-appropriate odor delivery method that can be analytically validated and quantified, akin to laboratory-based research methods, such as permeation devices that deliver a stable concentration of a specific chemical vapor for instrumental testing purposes. COMPS were created for 12 compounds across a range of carbon chain lengths and functional groups in such a way to produce similar permeation rates for all compounds. Using detection canines as a model, field-testing was performed to assess the efficacy of the method. Additionally headspace concentrations over time were measured as confirmation of odor availability using either externally sampled internal standard-solid phase microextraction-gas chromatography-mass spectrometry (ESIS-SPME-GC-MS) or collection onto a programmable temperature vaporizing (PTV) GC inlet with MS detection. Finally, lifetime usage was considered. An efficient method for producing and measuring reliable odor availabilities across various chemical functional groups was developed, addressing a noted gap in existing literature that will advance canine and other nonhuman mammal research testing.


Assuntos
Odorantes/análise , Bulbo Olfatório/química , Ácidos Pentanoicos/análise , Microextração em Fase Sólida , Animais , Cães , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular
16.
Anat Histol Embryol ; 48(4): 334-339, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31016783

RESUMO

The olfactory bulb (OB) shows special characteristics in its phylogenetic cortical structure and synaptic pattern. In the OB, gamma-aminobutyric acid (GABA), as an inhibitory neurotransmitter, is secreted from GABAergic neurons which contain parvalbumin (a calcium-binding protein). Many studies on the distribution of parvalbumin-immunoreactive neurons in the rodent OB have been published but poorly reported in the avian OB. Therefore, in this study, we compared the structure of the OB and distribution of parvalbumin-immunoreactive neurons in the OB between the rat and pigeon using cresyl violet staining and immunohistochemistry for parvalbumin, respectively. Fundamentally, the pigeon OB showed layers like those of the rat OB; however, some layers were not clear like in the rat OB. Parvalbumin-immunoreactive neurons in the pigeon OB were predominantly distributed in the external plexiform layer like that in the rat OB; however, the neurons did not have long processes like those in the rat. Furthermore, parvalbumin-immunoreactive fibres were abundant in some layers; this finding was not shown in the rat OB. In brief, parvalbumin-immunoreactive neurons were found like those in the rat OB; however, parvalbumin-immunoreactive fibres were significantly abundant in the pigeon OB compared to those in the rat OB.


Assuntos
Columbidae/anatomia & histologia , Bulbo Olfatório/citologia , Parvalbuminas/análise , Ratos Sprague-Dawley/anatomia & histologia , Animais , Benzoxazinas , Corantes , Columbidae/metabolismo , Imuno-Histoquímica/veterinária , Masculino , Bulbo Olfatório/química , Parvalbuminas/imunologia , Ratos , Ratos Sprague-Dawley/metabolismo , Coloração e Rotulagem/veterinária
17.
Sci Total Environ ; 653: 1192-1203, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759559

RESUMO

A variety of appliances operated by brush electric motors, widely used in indoor environments, emit nanoparticles (NPs). Due to electric arc discharge during the operation of such motors, some NPs contain copper (Cu). Their dimensions are the same of those found in brain tissue samples by other authors who speculated their possible translocation to brain through olfactory bulb. Cu has been reported to play an important role in the etiopathogenesis of Alzheimer's disease. Thus, the present study was performed to 1. estimate by means of Multiple-Path Particle Dosimetry model the doses of NPs released by electric appliances that can potentially deposit on the olfactory bulb; 2. investigate the morphology and the composition of particles emitted by some electric appliances daily used in indoor environments; 3. monitor for a long time period the Cu contamination of indoor environments due to this kind of appliances. About 106-107 NPs deposit on the olfactory bulb during the operation (1.5-6 min) of such appliances, with a major contribution due to 10-20 nm NPs. HR-FESEM characterization confirmed the presence of such NPs, that were observed both as individual particles (20-40 nm) and aggregated to form particles in the µm sizes range. XEDS microanalysis revealed the presence of Cu together with other elements. Relevant daily contamination of indoor environments due to these appliances has been confirmed by monitoring throughout a year the Cu content of PM10 samples collected both indoor and outdoor private dwellings. Cu was present in great part as an insoluble form. This means that, following protracted exposure, Cu NPs of such origin may undergo tissue accumulation. This is cause of concern because general population is chronically exposed to such Cu nanoparticles in indoor environments and in view of the role assigned to Cu in the development of neurological disorders.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Cobre/análise , Nanopartículas Metálicas/análise , Simulação por Computador , Cobre/química , Monitoramento Ambiental , Utensílios Domésticos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Bulbo Olfatório/química , Tamanho da Partícula
18.
Front Neural Circuits ; 12: 99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483067

RESUMO

The mammalian basal forebrain (BF), a heterogenous structure providing the primary cholinergic inputs to cortical and limbic structures, plays a crucial role in various physiological processes such as learning/memory and attention. Despite the involvement of the BF cholinergic neurons (BFCNs) in olfaction related memory has been reported, the underlying neural circuits remain poorly understood. Here, we combined viral trans-synaptic tracing systems and ChAT-cre transgenic mice to systematically reveal the relationship between the olfactory system and the different subsets of BFCNs. The retrograde adeno-associated virus and rabies virus (AAV-RV) tracing showed that different subregional BFCNs received diverse inputs from multiple olfactory cortices. The cholinergic neurons in medial and caudal horizontal diagonal band Broca (HDB), magnocellular preoptic area (MCPO) and ventral substantia innominate (SI; hereafter HMS complex, HMSc) received the inputs from the entire olfactory system such as the olfactory bulb (OB), anterior olfactory nucleus (AON), entorhinal cortex (ENT), basolateral amygdala and especially the piriform cortex (PC) and hippocampus (HIP); while medial septum (MS/DB) and a part of rostral HDB (hereafter MS/DB complex, MS/DBc), predominantly from HIP; and nucleus basalis Meynert (NBM) and dorsal SI (hereafter NBM complex, NBMc), mainly from the central amygdala. The anterograde vesicular stomatitis virus (VSV) tracing further validated that the major target of the OB to the BF is HMSc. To correlate these structural relations between the BFCNs and olfactory functions, the neurons activated in the BF during olfaction related task were mapped with c-fos immunostaining. It was found that some of the BFCNs were activated in go/no-go olfactory discrimination task, but with different activated patterns. Interestingly, the BFCNs in HMSc were more significantly activated than the other subregions. Therefore, our data have demonstrated that among the different subgroups of BFCNs, HMSc is more closely related to the olfactory system, both structurally and functionally. This work provides the evidence for distinct roles of different subsets of BFNCs in olfaction associated memory.


Assuntos
Prosencéfalo Basal/citologia , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Memória/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Animais , Prosencéfalo Basal/química , Neurônios Colinérgicos/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bulbo Olfatório/química , Olfato/fisiologia
19.
Neuron ; 99(4): 800-813.e6, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30078580

RESUMO

Sensory input reaching the brain from bilateral and offset channels is nonetheless perceived as unified. This unity could be explained by simultaneous projections to both hemispheres, or inter-hemispheric information transfer between sensory cortical maps. Odor input, however, is not topographically organized, nor does it project bilaterally, making olfactory perceptual unity enigmatic. Here we report a circuit that interconnects mirror-symmetric isofunctional mitral/tufted cells between the mouse olfactory bulbs. Connected neurons respond to similar odors from ipsi- and contra-nostrils, whereas unconnected neurons do not respond to odors from the contralateral nostril. This connectivity is likely mediated through a one-to-one mapping from mitral/tufted neurons to the ipsilateral anterior olfactory nucleus pars externa, which activates the mirror-symmetric isofunctional mitral/tufted neurons glutamatergically. This circuit enables sharing of odor information across hemispheres in the absence of a cortical topographical organization, suggesting that olfactory glomerular maps are the equivalent of cortical sensory maps found in other senses.


Assuntos
Potenciais de Ação/fisiologia , Neurônios-Espelho/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Neurônios-Espelho/química , Bulbo Olfatório/química , Bulbo Olfatório/citologia , Condutos Olfatórios/química , Condutos Olfatórios/citologia , Distribuição Aleatória
20.
Methods Mol Biol ; 1779: 527-541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886555

RESUMO

Manganese-enhanced MRI (MRI) is a technique that allows for a noninvasive in vivo estimation of neuronal transport. It relies on the physicochemical properties of manganese, which is both a calcium analogue being transported along neurons by active transport, and a paramagnetic compound that can be detected on conventional T1-weighted images. Here, we report a multi-session MEMRI protocol that helps establish time-dependent curves relating to neuronal transport along the olfactory tract over several days. The characterization of these curves via unbiased fitting enables us to infer objectively a set of three parameters (the rate of manganese transport from the maximum slope, the peak intensity, and the time to peak intensity). These parameters, measured previously in wild type mice during normal aging, have served as a baseline to demonstrate their significant sensitivity to pathogenic processes associated with Tau pathology. Importantly, the evaluation of these three parameters and their use as indicators can be extended to monitor any normal and pathogenic processes where neuronal transport is altered. This approach can be applied to characterize and quantify the effect of any neurological disease conditions on neuronal transport in animal models, together with the efficacy of potential therapies.


Assuntos
Imageamento por Ressonância Magnética/métodos , Manganês/administração & dosagem , Bulbo Olfatório/diagnóstico por imagem , Animais , Transporte Biológico Ativo , Modelos Animais de Doenças , Humanos , Manganês/farmacocinética , Bulbo Olfatório/química , Tauopatias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...